Investigating the independent evolution of the size of floral organs via G-matrix estimation and artificial selection.
نویسندگان
چکیده
The attractiveness of a plant to pollinators is dependent on both the number of flowers produced and the size of the petals. However, limiting resources often result in a size/number trade-off, whereby the plant can make either more flowers or larger flowers, but not both. If developmental genes underlying sepal and petal identity (some of which overlap) also influence size, then this shared genetic basis could constrain the independent evolution of floral size and attractiveness. Here, we determined whether the size of sepals and petals in the dioecious perennial, Silene latifolia, are developmentally independent by performing two experiments: a genetic variance-covariance experiment to estimate genetic correlations between calyx width, petal-limb length, flower mass, and number and a four-bout artificial-selection experiment to alter calyx width and estimate the correlated response in petal-limb length. In addition, we determined whether variation in petal-limb length is the result of cell expansion or cell proliferation. The first experiment revealed that petal-limb length is not genetically correlated with calyx width, and the second experiment confirmed this; selection on calyx width did not result in a predictable or significant change in petal-limb length. Flower number was negatively correlated with all the floral traits measured, indicating a flower size/number trade-off. Cell number, but not size, explained a significant amount of the variation in petal-limb length. We conclude that the size of the two outer floral organs can evolve independently. This species can therefore increase the number of flowers produced by decreasing investment in the calyx without simultaneously decreasing petal size and the attractiveness of each individual flower to pollinators.
منابع مشابه
THE CMA EVOLUTION STRATEGY BASED SIZE OPTIMIZATION OF TRUSS STRUCTURES
Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation and deterministic selection. Gaussian mutation captures pair-wise dependencies between the variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to update this covariance matrix. In this paper, the CMA-ES, which has found many applications in solving continuous optimizatio...
متن کاملOpposing natural selection from herbivores and pathogens may maintain floral-color variation in Claytonia virginica (Portulacaceae).
The maintenance of floral-color variation within natural populations is enigmatic because directional selection through pollinator preferences combined with random genetic drift should lead to the rapid loss of such variation. Fluctuating, balancing, and negative frequency-dependent selection mediated through pollinators have been identified as factors that may contribute to the maintenance of ...
متن کاملEstimation of the mean grain size of mechanically induced Hydroxyapatite based bioceramics via artificial neural network
This study focuses on the estimation of the mean grain size of mechanically induced Hydroxyapatite (HA) through the artificial neural network (ANN) model. The mean grain size of HA and HA based nanocomposites at different milling parameters were obtained from previous studies. The data were trained and tested by the neural network modeling. Accordingly, all data (55 sets) were based on the mecha...
متن کاملPenalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملGenetic constraints on floral evolution in a sexually dimorphic plant revealed by artificial selection.
Sexual dimorphism is one of the most widespread and recognizable patterns of phenotypic variation in the biotic world. Sexual dimorphism in floral display is striking in the dioecious plant Silene latifolia, with males making many, small flowers compared to females. We investigated this dimorphism via artificial selection on two populations to determine whether genetic variation exists within p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolution & development
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2004